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ABSTRACT 

Let F C K be a field extension, A be a K-algebra. It is proved that, in general, 
GK dimFA -> GK dimKA + trF(K). For commutative algebras or Noetherian 
P.I. algebras, the equality holds. Two examples are also constructed to show 
that: (i) there exists an algebra A such that GK dimF A = GK dimKA + trF(K) + 
1 ; (ii) there exists an algebraic extension F C K and a K-algebra A such that 
GK dimFA = oo, but GK dimKA < w. 

1. Introduction 

The purpose  o f  this note  is to con t r ibu te  to the fol lowing p rob l e m on G e l f a n d -  

Kiri l lov d imens ion :  I f  F C K is a field extension,  A is an a lgebra  over  K, what  

can we say abou t  the re la t ion  between GK d i m F A  and GK d i m K A  (A is viewed 

as an F -a lgeb ra  natural ly) .  Firs t ,  let us recall some def ini t ions.  Let A be a finitely 

generated algebra over the field K and let V be a finite dimensional  generating sub- 

space o f  AK, i .e. ,  A = K [ V ] ,  the suba lgebra  o f  A genera ted  by V. The G c l f a n d -  

Kiri l lov d imens ion  o f  A is def ined to  be 

G K d i m x A  = lim l o g n d i m x ( K +  V + - - - +  V ~) = lim l o g ~ d v ( n )  

(convent ional ly ,  d r ( n )  = d i m x ( K  + V + - . .  + Vn)). This is equal  to 

I n f [ r  E R [ d v ( n )  <_ n r for a lmos t  all n}. 

F o r  any K-a lgebra  A (not necessari ly finitely generated) ,  GK dimK A is def ined to 

be Sup[  GK d im,vA '  lall  f ini tely genera ted  suba lgebras  A '  o f  A ]  ([3,5]). By defi-  

nit ion,  in fact, Gel fand-Kir i l lov  dimension measures the rate of  growth o f  the steps 
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of V generating A. GK dimK A is independent of  the choice of the generating sub- 

space of  A x .  It is an invariant of the K-algebra A. Although in some special 

cases, GK d i m r A  = cl.K dim A, it is easy to see that GK dimKA depends on the 

base field K. GK dimK A is not an invariant of  the ring A. The general theory of 

Gelfand-KirilIov dimension has :some similarity with the theory of  Krull dimension 

on some occasions, but Gelfand-Kirillov dimension and Krull dimension are fun- 

damentally different. Krull dimension is a ring-theoretic invariant. In some cases, 

Gelfand-Kirillov dimension has more advantage than Krull dimension. The the- 

ory of Gelfand-Kirillov dimension, developed since Borho and Kraft's paper ([3]) 

in 1976, has many successful applications in several important classes of algebras. 

Recently, people are interested in seeking the ring-theoretic properties from the in- 

formation given by the Gelfand-Kirillov dimension, for example, if GK dimK A is 

finite, is the length of  the descending chain of prime ideals of A bounded ([2])? 

From this kind of  problem, our problem about the behavior of Gelfand-Kirillov 

dimension under base field extension arises. Let F C K be a field extension, A be 

a K-algebra. In this paper, we prove GK dimFA >_ GK dim~A + trF(K) in gen- 

eral. If A is a commutative algebra or a Noetherian P.I. algebra, we have the equal- 

ity GK dimFA = GK dimK A + trF(K), where trF(K) is the transcendental degree 

of  the field K over F. 

We also construct two examples to show the above inequality can be strict. One 

is an algebra A with two generators over K ( X ) ,  such that G K d im K A  = 

GK dimK(x) A + 2. The other shows that there exists an algebra A over an infinite 

algebraic extension field K over F, such that GK dimK A = 3, but GK dimF A = oo. 

2. Proof  of the results 

First, we consider the case of a simple transcendental extension. 

PROPOSITION]. LetAbeanalgebraoverK(X)whereK(X)is thef ie ldofrat ional  

functions in one indeterminate X over K, then GK dimxA >_ GK dimK(x) A + 1. 

PROOF. We may assume that A is a finitely generated K(X)-algebra.  Let 

{al, a2 , . . . ,  am] be a set of generators of AK(x). For convenience, we may assume 

that [1,X] _c [al ,a2 . . . . .  am]. V= K(X)a t  + K(X)a2 + - -  • + K(X)am is a finite 

dimensional generating subspace of A over K ( X ) .  Denote V' = Kal + Ka2 + • • • + 

[(am and K[V']  = the K-subalgebra of A x  generated by [V ' ] .  Obviously, 

dim,~(x) V _  dim K V', for if a subset {ac} of  [ai[i = 1,2 . . . . .  m] is indepen- 

dent over K ( X ) ,  then it is certainly independent over K. If a subset [a~,aj,] c_ 

{ aiaj [ 1 <_ i , j  _ m ] is K(X)-independent, then [ ac aj,, Xac aj, ] is independent over 
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K. Since [ai, ag,,Xai, a/] c_ V ,3, it follows that 2 dimK(x) V 2 ~  dimx V '3. In the 

same way, for any n, we have n'dimK(x) V" <_ dimK V '2n-l. So 

logn(n'dimK(x) V ~) <- logn(dimK V '2n- ' ) ,  

1 + l o g ,  dimx(x) V ~ - [log(dimK v 'Zn- ' ) / log(2n  - 1)] • [log(2n - l ) / l o g n ] ,  

lim (1 + log~ dimx(x) V ") -< 
n ~ o o  

li--m [[log(dimK v 'Z"- l ) / log(2n  - 1)] • [log(2n - 1)/ logn]},  
n ~ o o  

Since lim~+= [ l o g ( 2 n -  1)/log n] = 1, 

1 + lim log~(dimK(x) V ~) _< lim [1og(dimK V'2"- l ) / log(2n - 1)] 
? t ~ o o  n + o o  

_< lim log,(dimK V'~). 
n ~ o o  

Hence 1 + GK dim,c(x) A -< G K d i m K K [ V ' ]  <_ GK dimKA. • 

In fact, in the above proposition, GK dimKK[V']  = GK dimKA, since A = 

K ( X )  [V ' ]  = K[X]  [V'](KfX]/O)-' = K[V'](K~X]/O)-~ and K [ X ] / O  consists of  

regular, central elements of  K[V']  (Prop. 4.2 [5]). 

LEMMA 2. (i) Let F C K be a f ield extension, A be an algebra over K. Then 

GK dimF A _> GK dimK A. 

(ii) I f  F C K is a finite algebraic extension, then GK dimF A = GK dimK A. 

The proof  is standard. If  F C K is an infinite algebraic extension, (ii) will not be 

true, as we will see later, in Example 2. 

PROPOSITION 3. Let F C K be af ie ld  extension, A be an algebra over K. Then 

GK d imeA >-- GK dimK A + t rF(K).  

PROOF. It suffices to prove the proposition in the case that .4 is a finitely gen- 

erated K-algebra and GK dimK A is finite. Let K '  be the algebraic closure of  F in 

K, then K is a pure transcendental extension of K'.  By Proposition 1 and Lemma 2, 

G K d i m F A  >_ GK di m x ,  A ->- G K d i m K A  + trK,(K) = G K d i m ,  A + t rF(K).  • 

As we know, if F C K is a field extension, then GK dimF K = t rF(K).  If  Ax  is 

a finitely generated commutative algebra, by the Noetherian Normalization the- 

orem, it is easy to see that GK dimKA = cl.K. dim A = tU,-(A), but GK dimFA, 

in general, is greater than cl.K. dim A. We have 
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PROPOSITION 4. Let F C K be a f ie ld  extension, A be an algebra over K. I f  A 

is a commutat ive  algebra or a Noetherian P.I. algebra, then GK dimFA = 

GK dim/cA + trF(K).  

PROOF. First, we assume that A is commutative. Without loss of generality, we 

may assume that A is a finitely generated K-algebra, by definition. Hence A is a 

Noetherian commutative algebra. (Although there is a direct proof,  we reduce it 

to the case of  Noetherian P.I.) So we may assume that A is a Noetherian P.I. al- 

gebra. Let N be the nilradical of A. 

GK dimK A = GK dim/c A / N  = 

max{GK d i m x A / P ]  for any minimal prime ideal P of A} ([6]). 

Also, we have 

GK dimF A = max [GK dimF A / P l f o r  any minimal prime ideal P of A] .  

So we may assume further that A is a Noetherian prime P.I. algebra. By Posner's 

theorem, for any prime P.I. algebra A, A has a simple Artinian quotient algebra 

Q satisfying the same polynomial identity as A, and 

o =  Az::  [az ' la A, 0 .  Z}, 

where Z is the center of A. And by Kaplansky's theorem, Q is finite dimen- 

sional over its center Z ( Q ) .  Hence GK dim/c A = GK dimK(Q) (Prop. 4.2 [5]) = 

G K d i m K Z ( Q )  (Prop. 5.5 [5 ] )=  t r /c(Z(Q)) .  In the same way, G K d im F A  = 

t rF(Z(Q)) .  It follows that GK dimFA = GK d imxA + t rF(K).  • 

From the above proposition, it seems to make sense to say that Gelfand-Kirillov 

dimension is a generalization of the "transcendence degree" to several classes of 

algebras. As we see in the preceding proofs, the behavior of  Gelfand-Kirillov di- 

mension under base field extension heavily depends on the relations of generators 

of A over the base field. If the relations are good enough, for example, group al- 

gebra and Weyl algebra, then we have the equality GK dimFA = GK dimxA + 

trF(K). By the way, i fA is an F.algebra, K is a field, then, obviously, GK dimFA = 

GK dimK (K (~FA). 

3. Examples 

As with many examples in the theory of Gelfand-Kirillov dimension ([1,4]), our 

examples are also homomorphic images of free algebra with two generators. 
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EXAMPLE 1. Let K ( X )  be the field of rational functions in one indeterminate X 

over the field K, K ( X )  [ Y, Z} be the free algebra with two generators Y and Z over 

the field K ( X ) .  Denote A = K ( X )  [ Y, Z I / ( Y Z  - X Z Y ) ,  then GK dimK(x) A = 2, 

but GK dimK A = 4. 

For convenience, let y = Y + ( Y Z  - X Z Y )  and z = Z + ( Y Z  - X Z Y )  in A. 

Obviously, A can be generated by {y, z} as K(X)-algebra,  and yz  = X z y  in A. No- 

tice also ySzj = X ° z @  s ( v i , j  _> 0) and the monomials [ z S f [ i , j  >_ 0] are indepen- 

dent over K ( X ) .  So, for the generating subspace V = K ( X ) y  + K ( X ) z  of A over 

K ( X ) ,  and any integer n >_ 0, 

dim,~(x) V n = I lz*yJI i + j = n, i , j  >>_ o}l = n + 1. 

dim/~(x~(K + V + V 2 + - . . +  V ~) = (n + 1)(n + 2) /2 .  It follows that 

GK dim~:(x) A = 2. 

On the other hand, let V = Ky + Kz,  K [ V ]  be the K-subalgebra of  At( 

generated by V over K. We claim that GKdim~:K[V]  = 4. Obviously, V 2 is 

spanned by [yZ, xzy, Zy, Z21. It can be verified that for any n, V ~ is spanned 

by { X t z i y l i  + j = n, i , j  >_ O, 0 <_ l <_ ij} and this set, in fact, is a basis of  V n 

over K. So 

dimK V n = k [i(n - i) + 1]. 
i = 0  

It is easy to know that 

d i m / c V n =  ( ~ )  + ( ~ )  + ( ~ )  + 1  f o r n  _> 3 

by Lemma 1.5, [5] ( (~)  is the binomial coefficients). It follows that 

(since d r (4 )  = 30) for n _ 4. It is a polynomial  of  n with degree 4. Hence 

GK dim/~K[V] = 4. 

As we noted before, GK dimK K ( X ) [ y , z ]  = GK dimA~ K [ X , y , z ] .  Denote V' = 

K X  + Ky + Kz, V'  is a generating subspace of K [ X , y , z ] K .  It is easy to know that 

dimK V ' ~ =  ][XS+'z iyJ l i , j , s  >_ O , i + j + s =  n, O <_ l <_ ij][ and 
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dv,(n)  = dv(n)  + 1.n + 2(n  - 1) + 3 (n  - 3) + . . . +  n-1 

is also a po lynomia l  o f  n with degree 4. Hence  

G K  d i m K A  = GK d i m x K ( X )  [y , z ]  = GK dimKK[X,y , z]  = l im dv,(n)  = 4. • 

R E ~ .  In the above  example ,  the main  fea ture  which makes  G K  d im~ A = 

G K d i m ~ x ) A  + t r K ( K ( X ) )  + I is t ha t  for  any  m o n o m i a l ,  ziy n-i comes  up  

i (n - i)  t imes.  

EXAMPLr 2. Let  K = F[ai,a2 . . . . .  an . . . .  ] be an inf ini te  a lgebra ic  field ex- 

tension,  ai+l is a square  roo t  over  F[a~,a2 . . . . .  ai] ( i  = 1,2 . . . . .  n . . . .  ), a~ is a 

square  roo t  over  the field F. Let K[X,  Y} be the  free a lgebra  with two  genera tors  

X,  Y over  K, 

I = ( X Y X -  a l X 3 , X y 2 X -  a2 X4 . . . . .  X y i x -  ai x i + 2  . . . .  ), 

i .e . ,  the ideal  o f  K[X,  Y] genera ted  by [ X Y i X -  aiX~+Z]i = 1,2 . . . .  }. Cons ide r  

A = K[X,  Y]/I .  Then  A is an a lgebra  over  K genera ted  by  x = X + I and  y = 

Y + I ,  and  GK dimK A = 3, G K  dim F A = oo. 

Not ice  tha t  xyix = aix i+2 in A and  [xiy j, i , j  >_ 0] U [y ixJyk l i , j  > O, k >_ 0] 

is a K-bas i s  o f  AK. Deno te  V -- Kx + Ky. V is a gene ra t ing  subspace  o f  the  

K-a lgeb ra  A.  Obvious ly ,  V n is spanned  by 

[xiyJ]i,j  >_ O, i + j =  n} U [yixJyk]i , j  > O, k >_ O, i + j + k = n}. 

Hence  

It  fol lows that  

(since d r ( 3 )  = 14). So, GK d i m K A  = 3. 

Next,  we est imate G K  dimF A.  Denote  V = Fx + Fy. For  any finite d imensional  

F - subspace  V '  o f  AF, there  exist an integer m and some finite extension field K '  

o f  F ,  such tha t  V" c_ K ' ( F  + V + . . . +  vm).  Hence  F[V']  c_ K ' [V] ,  

G K d i m F F [ V  '] <_ GK dimFK'[V] = GK d imrF[V] .  By de f in i t i on ,  we have  
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G K d i m F A  = G K d i m F F [ V ] .  So, to estimate G K d i m F A ,  we first estimate 

dimF V". Note: 
(i) W~ = [x iyJ l i ,  j>_ O, i + j =  n} U { y i x J y k [ i , j >  O, k>.  O, i + j +  k = n} is an 

independent subset of  V ", [W.[ = n + 1 + n ( n  - 1)/2. 

(ii) Let W., i (i >_ 1) be the subset of Wn consisting of those monomials of  W~ 

whose degree in x _> i. For any monomial w in W~, if w E I'V~,s+2, then asw E V ~ 

(for example, if x i y  j E W., i _> s + 2, then asxiy  i = xySxxg-~s+2)y i E V ~) and 

U ~  asW~,s÷z is independent over E In the same way, if w E W~,s~+s2+3 (sl < s2), 

then as~as2w E V ~ and [.-J~+~2+3_~. as, a~2W~,~+~2+3 (s~ < s2) is an F-independent 

subset of  V ~. In general, for any d > 0, 

U (as~as2"" "asdWn,sl+s2+...+sd+d+l) ( S I  < $ 2  • ' "  " <  Sd) 
S l + S 2 +  • . .  +Sd+d+l 

is an F-independent subset of  V n. 

In particular, for any d > 3 and sufficient large n, 

S =  [ as, asz . . . asdXn+d+ l [ s l + sz + . . . + sd + d + 1 = n + d +  1, 

l ~ S  1 <$2 < ' ' ' <  Sd} 

is an F-independent subset of V "+a+l. Hence 

d i m F V n + d + l > l S l > l / d ' [ ( d  l ) - ( d  3 ) - ( d  

ll)[(: 33)+ (:_-43)++ 
= I/d! 1 

and * is a polynomial of n with degree d - 2. It follows that 

n 

d v ( n  + d + 1) = d i m F ( F +  V + . . . +  V n+a+l) > ~ dime V i+a÷l 
i = 0  

_> some polynomial of n with degree d. 

Hence 

m 
GKdimFA = l imdv(n)>_  l i m d v ( n + d +  1)>_d. 

n--*oo H-~oo 

So, GK dimFA = oo. • 
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